Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
2.
IEEE J Biomed Health Inform ; 26(1): 172-182, 2022 01.
Article in English | MEDLINE | ID: covidwho-1642566

ABSTRACT

Till March 31st, 2021, the coronavirus disease 2019 (COVID-19) had reportedly infected more than 127 million people and caused over 2.5 million deaths worldwide. Timely diagnosis of COVID-19 is crucial for management of individual patients as well as containment of the highly contagious disease. Having realized the clinical value of non-contrast chest computed tomography (CT) for diagnosis of COVID-19, deep learning (DL) based automated methods have been proposed to aid the radiologists in reading the huge quantities of CT exams as a result of the pandemic. In this work, we address an overlooked problem for training deep convolutional neural networks for COVID-19 classification using real-world multi-source data, namely, the data source bias problem. The data source bias problem refers to the situation in which certain sources of data comprise only a single class of data, and training with such source-biased data may make the DL models learn to distinguish data sources instead of COVID-19. To overcome this problem, we propose MIx-aNd-Interpolate (MINI), a conceptually simple, easy-to-implement, efficient yet effective training strategy. The proposed MINI approach generates volumes of the absent class by combining the samples collected from different hospitals, which enlarges the sample space of the original source-biased dataset. Experimental results on a large collection of real patient data (1,221 COVID-19 and 1,520 negative CT images, and the latter consisting of 786 community acquired pneumonia and 734 non-pneumonia) from eight hospitals and health institutions show that: 1) MINI can improve COVID-19 classification performance upon the baseline (which does not deal with the source bias), and 2) MINI is superior to competing methods in terms of the extent of improvement.


Subject(s)
COVID-19 , Deep Learning , Algorithms , Humans , Pandemics , SARS-CoV-2
3.
Value Health ; 25(5): 699-708, 2022 05.
Article in English | MEDLINE | ID: covidwho-1559519

ABSTRACT

OBJECTIVES: Most countries have adopted public activity intervention policies to control the coronavirus disease 2019 (COVID-19) pandemic. Nevertheless, empirical evidence of the effectiveness of different interventions on the containment of the epidemic was inconsistent. METHODS: We retrieved time-series intervention policy data for 145 countries from the Oxford COVID-19 Government Response Tracker from December 31, 2019, to July 1, 2020, which included 8 containment and closure policies. We investigated the association of timeliness, stringency, and duration of intervention with cumulative infections per million population on July 1, 2020. We introduced a novel counterfactual estimator to estimate the effects of these interventions on COVID-19 time-varying reproduction number (Rt). RESULTS: There is some evidence that earlier implementation, longer durations, and more strictness of intervention policies at the early but not middle stage were associated with reduced infections of COVID-19. The counterfactual model proved to have controlled for unobserved time-varying confounders and established a valid causal relationship between policy intervention and Rt reduction. The average intervention effect revealed that all interventions significantly decrease Rt after their implementation. Rt decreased by 30% (22%-41%) in 25 to 32 days after policy intervention. Among the 8 interventions, school closing, workplace closing, and public events cancellation demonstrated the strongest and most consistent evidence of associations. CONCLUSIONS: Our study provides more reliable evidence of the quantitative effects of policy interventions on the COVID-19 epidemic and suggested that stricter public activity interventions should be implemented at the early stage of the epidemic for improved containment.


Subject(s)
COVID-19 , Influenza, Human , COVID-19/epidemiology , COVID-19/prevention & control , Health Policy , Humans , Influenza, Human/epidemiology , Pandemics/prevention & control , Schools
4.
Sci Rep ; 10(1): 21122, 2020 12 03.
Article in English | MEDLINE | ID: covidwho-957580

ABSTRACT

The current outbreak of coronavirus disease 2019 (COVID-19) has recently been declared as a pandemic and spread over 200 countries and territories. Forecasting the long-term trend of the COVID-19 epidemic can help health authorities determine the transmission characteristics of the virus and take appropriate prevention and control strategies beforehand. Previous studies that solely applied traditional epidemic models or machine learning models were subject to underfitting or overfitting problems. We propose a new model named Dynamic-Susceptible-Exposed-Infective-Quarantined (D-SEIQ), by making appropriate modifications of the Susceptible-Exposed-Infective-Recovered (SEIR) model and integrating machine learning based parameter optimization under epidemiological rational constraints. We used the model to predict the long-term reported cumulative numbers of COVID-19 cases in China from January 27, 2020. We evaluated our model on officially reported confirmed cases from three different regions in China, and the results proved the effectiveness of our model in terms of simulating and predicting the trend of the COVID-19 outbreak. In China-Excluding-Hubei area within 7 days after the first public report, our model successfully and accurately predicted the long trend up to 40 days and the exact date of the outbreak peak. The predicted cumulative number (12,506) by March 10, 2020, was only 3·8% different from the actual number (13,005). The parameters obtained by our model proved the effectiveness of prevention and intervention strategies on epidemic control in China. The prediction results for five other countries suggested the external validity of our model. The integrated approach of epidemic and machine learning models could accurately forecast the long-term trend of the COVID-19 outbreak. The model parameters also provided insights into the analysis of COVID-19 transmission and the effectiveness of interventions in China.


Subject(s)
COVID-19/epidemiology , Pandemics/statistics & numerical data , China , Forecasting/methods , Humans , Models, Statistical
5.
IEEE J Biomed Health Inform ; 24(10): 2787-2797, 2020 10.
Article in English | MEDLINE | ID: covidwho-724919

ABSTRACT

Coronavirus Disease 2019 (COVID-19) has rapidly spread worldwide since first reported. Timely diagnosis of COVID-19 is crucial both for disease control and patient care. Non-contrast thoracic computed tomography (CT) has been identified as an effective tool for the diagnosis, yet the disease outbreak has placed tremendous pressure on radiologists for reading the exams and may potentially lead to fatigue-related mis-diagnosis. Reliable automatic classification algorithms can be really helpful; however, they usually require a considerable number of COVID-19 cases for training, which is difficult to acquire in a timely manner. Meanwhile, how to effectively utilize the existing archive of non-COVID-19 data (the negative samples) in the presence of severe class imbalance is another challenge. In addition, the sudden disease outbreak necessitates fast algorithm development. In this work, we propose a novel approach for effective and efficient training of COVID-19 classification networks using a small number of COVID-19 CT exams and an archive of negative samples. Concretely, a novel self-supervised learning method is proposed to extract features from the COVID-19 and negative samples. Then, two kinds of soft-labels ('difficulty' and 'diversity') are generated for the negative samples by computing the earth mover's distances between the features of the negative and COVID-19 samples, from which data 'values' of the negative samples can be assessed. A pre-set number of negative samples are selected accordingly and fed to the neural network for training. Experimental results show that our approach can achieve superior performance using about half of the negative samples, substantially reducing model training time.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques/statistics & numerical data , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/diagnosis , Pandemics , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/diagnosis , Radiographic Image Interpretation, Computer-Assisted/statistics & numerical data , Supervised Machine Learning , Tomography, X-Ray Computed/statistics & numerical data , Algorithms , COVID-19 , COVID-19 Testing , Cohort Studies , Computational Biology , Coronavirus Infections/classification , Deep Learning , Diagnostic Errors/statistics & numerical data , Humans , Neural Networks, Computer , Pandemics/classification , Pneumonia, Viral/classification , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL